
Theor Appl Genet (1994) 88:236-242 �9 Springer-Verlag 1994 

D. A. Huber �9 T. L. White �9 G. R. Hodge 

Variance component estimation techniques compared for two mating designs 
with forest genetic architecture through computer simulation 

Received: 15 February 1993 / Accepted: 9 September 1993 

Abstract Computer simulation was used to compare 
minimum variance quadratic estimation (MIVQUE), 
minimum norm quadratic unbiased estimation (MIN- 
QUE), restricted maximum likelihood (REML), maxi- 
mum likelihood (ML), and Henderson's Method 3 
(HM3) on the basis of variance among estimates, mean 
square error (MSE), bias and probability of nearness for 
estimation of both individual variance components and 
three ratios of variance components. The investigation 
also compared three procedures for dealing with 
negative estimates and included the use of both individ- 
ual observations and plot means as the experimental 
unit of the analysis. The structure of data simulated 
(field design, mating designs, genetic architecture and 
imbalance) represented typical analysis problems in 
quantitative forest genetics. Results of comparing the 
estimation techniques demonstrated that: estimates of 
probability of nearness did not discriminate among 
techniques; bias was discriminatory among procedures 
for dealing with negative estimates but not among esti- 
mation techniques (except ML); sampling variance 
among estimates was discriminatory among procedures 
for dealing with negative estimates, estimation tech- 
niques and unit of observation; and MSE provided no 
additional information to variance of the estimates. 
HM3 and REML were the closest competitors under 
these criteria; however, REML demonstrated greater 
robustness to imbalance. Of the three negative estimate 
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procedures, two are of practical significance and guide- 
lines for their application are presented. Estimates from 
individual observations were always preferable to those 
from plot means over the experimental levels of this 
study. 

Key words Minimum �9 Norm �9 Restricted �9 Likeli- 
hood �9 Half-diallel 

Introduction 

In many applications of quantitative genetics, geneti- 
cists are commonly faced with the analysis of field data 
containing a multitude of flaws (e.g., non-normality, im- 
balance, and heteroscedasticity). Imbalance, as one of 
these flaws, is intrinsic to quantitative forest genetics 
research because of the difficulty in making crosses for 
full-sib tests and the biological realities of long-term 
field experiments. Few definitive studies have been con- 
ducted to establish optimal methods for the estimation 
of variance components from unbalanced data. Simula- 
tion studies using simple models (one-way or two-way 
random models) have been conducted for certain data 
structures, namely imbalance, experimental design, and 
variance parameters (Corbeil and Searle 1976; Swallow 
and Monahan 1984; interpretations by Littell and 
McCutchan 1986). The results from these studies indi- 
cate that technique optimality is a function of the data 
structure. 

In practice (both historically and still commonplace), 
estimation of variance components in forest genetics 
applications has been achieved by sequentially adjusted 
sums of squares as an application of Henderson's 
Method 3 (HM3, Henderson 1953). Under normality, 
and with balanced data, this technique has the desirable 
properties of being the minimum variance unbiased 
estimator. If the data are unbalanced, then the only 
property retained by HM3 estimation is unbiasedness 
(Searle 1971, 1987 pp 492, 493, 498). Other estimators 
have been shown to be locally superior to HM3 in 



variance or mean square error properties in certain cases 
(Klotz et al. 1969; Olsen et al 1976; Swallow 1981; Swal- 
low and Monahan 1984). 

Over the last 25 years, there has been a proliferation 
of variance component estimation techniques including 
minimum norm quadratic unbiased estimation (MIN- 
QUE, Rao 1971a), minimum variance quadratic unbias- 
ed estimation (MIVQUE, Rao 1971b), maximum likeli- 
hood (ML, Hartley and Rao 1967), and restricted maxi- 
mum likelihood (REML, Patterson and Thompson 
1971). The practical application of these techniques has 
been impeded by their computational complexity. How- 
ever, with continuing advances in computer technology 
and the appearance of better computational algorithms, 
the application of these procedures continues to become 
more tractable (Harville 1977; Giesbrecht 1983; Meyer 
1989). Whether these methods of analysis are superior to 
HM3 for many genetics applications remains to be 
demonstrated. 

With balanced data and disregarding negative esti- 
mates, all previously mentioned techniques except ML 
produce the same estimates (Harville 1977). With unbal- 
anced data, each technique produces a different set of 
variance component estimates. Criteria must then be 
adopted to discriminate among techniques. Candidate 
criteria for discrimination include unbiasedness (large 
number convergence on the parametric value), mini- 
mum variance (estimator with the smallest sampling 
variance), minimum mean square error (minimum of 
sampling variance plus squared bias, Hogg and Craig 
1978), and probability of nearness (probability that 
sample estimates occur in a certain interval around the 
parametric value, Pitman 1937). 

Negative estimates are also problematic in the 
estimation of variance components. Five alternatives 
for dealing with the dilemma of estimates less than 
zero (outside the natural parameter space of zero to 
infinity) are (Searle 1971): (1) accept and use the nega- 
tive estimate, (2) set the negative estimate to zero 
(producing biased estimates), (3) re-solve the system with 
the offending component set to zero, (4) use an algo- 
rithm which does not allow negative estimates, and (5) 
use the negative estimate to infer that the wrong model 
was utilized. 
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The purpose of this research was to determine if 
the criteria of unbiasedness, minimum variance, mini- 
mum mean square error, and probability of nearness, 
discriminated among variance component estimation 
techniques while exploring various alternatives for deal- 
ing with negative variance component estimates. In 
order to make such comparisons, a large number of data 
sets were required for each experimental level. Using 
simulated data, this paper compares variance compo- 
nent estimation techniques for plot-mean and individual 
observations, two mating systems (modified half-dialM 
and half-sib), and two sets of parametric variance com- 
ponents. Types of imbalance and levels of factors were 
chosen to reflect common situations in forest genetics. 

Methods 

Experimental approach 

The overall experimental design for the simulation was originally 
conceived as a factorial with two types of mating design, two sets of 
true variance components spanning the range of commonly reported 
values for growth traits in conifers (Table 1), and two kinds of 
observations (individual and plot mean). There were three types of 
imbalance: (1) different survival levels (80% and 60%, with 80%, 
representing moderate survival and 60% representing poor survival); 
(2) for futl-sib designs three levels of missing crosses (0, 2, and 5 out of 
15 crosses); and (3) for half-sib designs two levels of connectedness 
among tests (15 and 10 common families between tests out of 15 
families per test). Because of computational time constraints, the 
experiment could not be run as a complete factorial and the investiga- 
tion continued as a partial factorial. In general, the approach was to 
run levels which were at opposite ends of the imbalance spectrum, i.e., 
80% survival and no missing crosses versus 60% survival and five 
missing crosses, within a variance component level. If results were 
consistent across these treatment combinations, intermediate levels 
were not run. 

Designation of a treatment combination is by a five-character 
alpha-numeric field. The first character is either "H" (half-sib) or "D" 
(half-diallel). The second character denotes the set of parametric 
variance components where "1" designated the set of variance com- 
ponents associated with heritability equalling 0.1 and "2" designated 
the set of variance components associated with heritability equalling 
0.25 (Table 1). The third character is an "S'" indicating that the last 
two characters determine the imbalance level. The fourth character 
designates the survival level either "6" for 60% or "8" for 80%. The 
final character specifies the number of missing crosses (half-dialM) or 
lack of connectedness (half-sib). 

Table 1 Sets of true variance components for the half-diallel and half-sib mating designs generated from specification of two levels of 
single-tree heritability (h2), type B correlation (@, and non-additive to additive variance ratio (d/a) 

Genetic ratios b Mating 
design 

True variance components b 

2 2 2 2 

Full-sib 1.0 0.5 0.25 0.25 0.25 0.25 0.595 7.905 
0.1 0.5 1.0 

Half-sib 1.0 0.5 0.25 NA 0.25 NA 0.475 7.9964 
0.25 0.8 0.25 Full-sib 1.0 0.5 0.625 0.1562 0.1562 0.0391 0.5769 7.6649 

a h2 = 4 o.2/0.~henotypir 2 2 2 and~rD/aAasd/a=4as/4 % . r B = 4 % / ( 4 ~  +4~o) ;  2 2 2 2 
b See definitions in equation 1 
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Experimental design for simulated data 

The mating design for the simulation was either a six-parent half- 
diallel (no sells) or a 15-parent half-sib. The randomized cmnplete 
block field design was in three locations with four complete blocks per 
location and six trees per family in a block; where family is a full-sib 
family for half-dialM, or a half-sib family for the half-sib design. This 
field design and the mating designs reflect typical designs in forestry 
applications (Squitlace 1973; Wilcox et al. 1975; Bridgwater et a l .  
1983; Weir and Goddard 1986; Loo-Dinkins et al. 1990) and are also 
commonly used in other disciplines (Matzinger et al. 1959; Hallauer 
and Miranda 1981; Singh and Singh 1984). The six trees per family 
could be considered as contiguous or non-contiguous plots without 
affecting the results or inferences. 

Full-sib linear model. The scalar linear model employed for half- 
dialM individual observations is 

Yijktm = [2 -[- t i + blj + gk + gl -[- Skl@ tgik + tgiz + tsikl + PijkI -[- WijkIm (1) 

where Yij.am is the m-th observation of the kl-th cross in thej-th test; 
# ~s the population mean; 
t i is the random variable test environment ~ NID (0, 0.~); 
b;2 is the random variable block ~ NID (0, 0.2); 
gk is the random variable female general combining ability 

(gca) ~ NID (0, 0.2); 
91 is the random variable male gca ~ NID (0, a~); 
SkZ is the random variable specific combining ability (sca) 

NID (0, 0-2); 
tg~k is the random variable test by female gca interaction 

NID (0, crt2g); 
tg~i is the random variable test by male gca interaction ~ NID 

(0, 0-,~); 
tslk~ is the random variable test by sca interaction 

NID (0, o.~s); 
Piikl is the random variable plot ~ NID (0, @); 
Wijkim is the random variable within-plot ~ NID (0, ~r~); and 

there is no covariance between random variables in the model. 
This linear model in matrix notation is (dimensions below model 
component) 

where yijk,, is the m-th observation of the k-th half-sib family in thejth 
block of the i-th test; 

IA ti, blj, 9k, and tgik retain the definition in equation 1; 
P ~jk is the random variable plot containing different genoty~e- 

by-environment components than equation 1 ~ NID (0, crph); 
h Wijkm lS the random variable within-plot containing different 

levels of genotypic and genotype-byfenvironment compo- 
nents than equation 1 ~NID(0 ,  awh); and there is no 
covariance between random variables in the model. 

The variance of an individual observation in half-sib designs is 
2 2 2 02g  2 2 Var(yijk,,) = o't + o-b + o.g + O'~h, + %h + (6) 

and 
t t r 2 t 2 n 2 

Var(y) = Z T Z T 0 -  t ~-  Z B Z B O -  b J[- Z G Z G O - g  -F Z T G Z T G 0 " t 0  

+ ZvZ;o.~h + I,a~h. (7) 

For an observational vector based on plot means, the plot and 
within-plot random variables were combined by taking the arithme- 
tic mean across the observations within a plot. The resulting 

2 2 2 2 �9 plot-means model has a new 6p o r  o'ph(o'p* or  o-ph*) term being a 
composite of the plot and within-plot variance terms of the individual 
observation model. 

Three estimates of ratios among variance components were deter- 
mined: (1) single tree heritability adjusted for test environment and 

~2  ^ 2  ^2 ^ 2  block as h = 4o-a /o -pheno typ ic ,  where %h~.o~ypir is the estimate of the 
variance of an individual observation with the variance components 
for test environment and block removed; (2) type B correlation as 
^ ^2 ^ 2  ^ 2  
r B = 4sg / (4% + 4c%); and (3) dominance to additive variance ratio 

^2  ^ 2  as d/a = 40-~ /40. g. 

Data generation and deletion 

Data generation was accomplished by using a Cholesky decomposi- 
tion of the variance-covariance matrix for the observations (Good- 
night 1979) and a vector of pseudo-random standard normal deviates 
generated using the Box-Muller transformation and pseudo-random 

y = #1 + Z T e  T 2V ZBe B + ZGe G + Zses + ZTGeTG 2v ZTSeTS + Zpep + e w 
nx l  nx l  nxt  t x l  nxb bx l  nxg gx l  nxs sx l  nxt9 tgxl  nxts t sx l  nxp p x l  nx l  (2) 

where y is the observation vector; 
Z i is the portion of the design matrix for the ith random vector; 
e i is the vector of unobservable random effects for the ith 

random variable; 
1 is a vector of l's; and 
n, t, b, g, s, t9, ts, and p are the number of observations, tests, 

blocks, gcas, gcas, scas, test by gca interactions, test by sca 
interactions and plots, respectively. 

Utilizing customary assumptions in half-dialM mating designs 
(Method 4, Griffing 1956), the variance of an individual observation is 

Var(yijkl,,) = 0-~ 2 2 2 2 02s _~ 2 2 + ab + 20- 0 + as + 20-to + ap + o-w; (3) 

and in matrix notation the variance-covariance matrix for the obser- 
vations is 

Var (y)=ZrZ~o2 , 2 , 2 , 2 + ZBZBO-b + ZGZGO-0 + ZsZsas 

i 2 t 2 n 2 2 
-1- Z T G Z T G a t o  -}- Z T s Z 1 N 0 " t s  -~ Z p Z i ,  o.p -[- I.o.w (4) 

where ..... indicates the transpose operator, all matrices of the form 
Z i Z[ are nxn, and I. is an nxn identity matrix. 

Half-sib linear model. The scalar linear model for half-sib individual 
observations is 

h h 
Yijkm = I 2 + ti + bij -I- gk + tgik + Pijk -{- Wijkm (5) 

uniform deviates (Knuth 1981; Press et al. 1989). The upper-lower 
decomposition creates a matrix (U) with the property that 
Var(y) = U 'U .  The vector of pseudo-random standard normal devi- 
ates (z) has a variance-covariance matrix equal to an indentity matrix 
(I.) where n is the number of observations. The vector of observations 
is created as y = U ' z .  Then Var(y)=U'(Var(z))U and since 
Var(z) = I., Vat(y) = U ' I U  = U ' U .  

Analyses of survival patterns [data from the Cooperative Forest 
Genetic Research Program (CFGRP) at the University of Florida] 
were used to develop survival distributions for use in the simulation. 
The data sets chosen for survival analysis were from full-sib slash pine 
(Pinus elliottii var. elliottii Engelm) tests. Survival levels for most 
crosses clustered around the average value; however, there were 
always a few crosses that had much poorer survival than average and 
also a small number of crosses that had much better survival than 
average. Thus, a lower than average survival level was arbitrarily 
assigned to certain crosses, a higher than average survival level was 
assigned to certain crosses, and the average survival level assigned to 
most crosses. This modelling of survival pattern was also extended to 
the half-sib mating design. At 80% survival no missing plots were 
allowed and at 60% survival missing plots occurred at random. 

Full-sib family deletion simulated crosses which could not be 
made and were, therefore, missing from the experiment. The deletion 
was restricted in the five missing cross simulations to a maximum of 
four crosses per parent to prevent loss of all the crosses in which a 
single parent appeared since this would have resulted in changing a 
six-parent to a five-parent half-diallel. 
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Tests having only subsets of the half-sib families present in 
common are a frequent occurrence in data analysis at CFGRP. This 
partial connectedness was simulated by generating data in which only 
10 of the 15 families present in a test were common to either one of the 
other two tests comprising a data set. 

Variance component estimation techniques 

Two algorithms were utilized for all estimation techniques: sequen- 
tially adjusted sums of squares (Milliken and Johnson 1984, p 138) for 
HM3; and Giesbrecht's algorithm (Giesbrecht 1983) for REML, ML, 
M I N Q U E  and MIVQUE. Giesbrecht's algorithm is primarily a 
gradient algorithm (the method of scoring), and as such allows 
negative estimates (Harville 1977; Giesbrecht 1983). Negative esti- 
mates are not a theoretical difficulty with M I N Q U E  or MIVQUE; 
however, for REML and ML, estimates should be confined to the 
parameter space. For this reason estimators referred to as REML and 
ML in this paper are not truly REML and ML when negative 
estimates occur; further, there is the possibility that the iterative 
solution stopped at local maxima and not at the global maximum. 
These concerns are commonplace in REML and ML estimation 
(Corbeil and Searle 1976; Harville 1977; Swallow and Monahan 
1984); however, ignoring these two points, these estimators are still 
referred to as REML and ML. 

The basic equation under normality (Giesbrecht 1983) for MIV- 
QUE, M I N Q U E  and REML is 

[tr(QViQVi)] #2 = [y, QV~ Qy] (8) 
r x r rx l  rx l  

then 

#2 = [tr(QVjQVi)] - 1Ey'QV~Qy] ; 

and for ML [tr(V-lV~V 1Vi)]#2 = [-y'QV~Qy]; (9) 
rxr rx l  rx l  

where (a~fl is a matrix whose elements are a~i where in the full-sib 
designs i = 1 to 8 and j = 1 to 8, that is there is a row and 
column for every random variable in the linear model; 

tr is the trace operator, that is the sum of the diagonal elements of a 
matrix; 

Q = V -  1 _ V-  1X(X'V- 1X)X'V- 1 for V as the dispersion matrix 
of y and X as the design matrix for fixed effects; 

V~ = Z~Z~ where i = the random variables test, block, etc.; 
6 -2 is the vector of variance component estimates; and 
r is the number of random variables in the model. 

The M I N Q U E  estimator used was MINQUE1,  i.e., with ones as 
priors for all variance components; calculated by applying the Gies- 
brecht's algorithm non-iteratively. MINQUE1 was chosen because of 
results demonstrating MINQUE0 (prior of 1 for the error term and of 
0 for all others) to be an inferior estimation technique for many cases 
(Swallow and Monahan 1984; R. C. Littell, unpublished data). 

With normally distributed uncorrelated random variables, the 
use of the true values of the variance components as priors in a non- 
iterative application of Giesbrecht's algorithm produced the MIV- 
QUE solutions (equation 8). Obtaining true MIVQUE estimation is 
a luxury of computer simulation and would not be possible in practice 
since the true variance components are required (Swallow and Searle 
1978). This estimator was included to provide a standard of compari- 
son for other estimators. An additional MIVQUE-type estimator, 
referred to as MIVPEN, was also included. MIVPEN too was a 
non-iterative application of the algorithm with the true variance 
components as priors; however, this estimator was conditioned on the 
variance component parameter space and did not allow negative 
estimates. The non-negative conditioning of MIVPEN was accom- 
plished by adding a penalty algorithm to MIVQUE such that no 
variance component was allowed to be less than 1 x 10 v. The 
penalty algorithm operated by using A = &2 _ ~2 and by choosing a 

�9 6 2  - scalar weight w such that no element of anew is less than 1 x 10- 7. 
Then #ngew = ~2 + WA, where A is the vector of departure from the true 
values (02), 1 x 10- 7 is an arbitrary constant and #2ew is the vector of 
estimated variance components conditioned on non-negativity�9 

REML estimates were from repeated application of Giesbrecht's 
algorithm (equation 8) in which the estimates from the k-th iteration 
become the priors for the k + 1-th iteration. The iterations were 
stopped when the difference between the estimates from the k-th and 
k + 1-th iterations met the convergence criterion; then the estimates 
of the k + 1-th iteration became the REML estimates. The conver- 

t ^ 2  ^2 gence criterion utilized was ~i= 11 oi~k) - oi~k + 1)1 < 1 x 10- 4. This 
criterion imposed convergence to the fourth decimal place for all 
variance components. The robustness of REML solutions obtained 
from Giesbrecht's algorithm to priors (or starting points) was ex- 
plored. The difference in solutions starting from two distinct points (a 
vector of ones or the true values) was compared over 2 000 data sets of 
different structures (imbalance, true variance components, and field 
design). The results (agreeing with those of Swallow and Monahan 
1984) indicated that the difference between the two solutions was 
entirely dependent on the stringency of the convergence criterion and 
not on the starting point (priors). Thus, all REML estimates were 
calculated starting with the true values as priors. 

Three alternatives for coping with negative estimates after conver- 
gence were used for REML solutions: accept and use the negative 
estimates (Shaw 1987), arbitrarily set negative estimates to zero, and 
re-solve the system setting negative estimates to zero (Miller 1973). 
The first two alternatives are self-explanatory and the latter is accom- 
plished by re-analyzing those data sets in which the initial unrestric- 
ted REML estimates included one or more negative estimates. Dur- 
ing re-analysis if a variance component became negative, it was set to 
zero (could never be any value other than zero) and the iterations 
continued. This procedure persisted until the convergence criterion 
was met with a solution in which all variance components were either 
positive or zero. 

ML solutions, as iterative applications of equation 9, were cal- 
culated from the same starting points and with the same convergence 
criterion as REML solutions. The same alternatives for negative 
variance components were explored for ML as for REML. 

The algorithm to calculate solutions for HM3 (sequentially ad- 
justed sums of squares) was based on the upper triangular G2 sweep 
(Goodnight 1979) and Hartley's method of synthesis (Hartley 1967). 
The equation solved was E(MS)# 2 = MS where MS is the vector of 
mean squares and E(MS) is their expectation. The alternative used for 
negative estimates was to ignore the fact that they were negative. 

Comparison among estimation techniques 

For the simulation MIVQUE estimates were the basis for all com- 
parisons because MIVQUE is by definition the minimum variance 
quadratic unbiased estimator. The results of comparing the mean of 
1000 MIVQUE estimates for an experimental level to the means for 
other techniques were termed "apparent bias". "Apparent bias" 
denotes that 1000 data sets were not sufficient to achieve complete 
convergence to the true values of the variance components. 

Sampling variances of estimation were calculated from the 1000 
observations within an experimental level and estimation technique 
for variance components and genetic ratios (single tree heritability, 
Type B correlation and dominance to additive variance ratio) Mean 
square error then equalled variance plus squared "apparent bias". 
While mean square error was investigated, there was never sufficient 
bias for mean square error to lead to a different decision concerning 
techniques than that obtained with the sampling variance of the 
estimates; so mean square error was deleted from the remainder of 
this discussion. 

Probability of nearness is the probability that an estimate will lie 
within a certain interval around the true parameter. The three total 
interval widths utilized were one-half, equal to, and twice the par- 
ameter size. The percentage of 1000 estimates falling within these 
intervals was calculated for the different estimation techniques within 
an experimental level for both variance components and ratios and 
utilized as an estimate of probability of nearness. 
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Results are presented by variance component or genetic ratio 
estimated as a percentage of MIVQUE (except in the case of probabil- 
ity of nearness). MIVQUE estimates represent 100%, with estimates 
with greater variance having values larger than 100% and "apparent- 
ly biased" estimates having values different from 100%. For probabil- 
ity of nearness, larger percentages (probabilities) are favored since 
they are indicative of greater density of estimates near the parametric 
value. 

Results and discussion 

Variance components 

Samplin9 variance of the estimators. For all variance 
components estimated (Table 2), REML and ML were 
consistently equal to or less than MIVQUE for samp- 
ling the variance of the estimator. The variance among 
estimates from these techniques was further reduced by 
setting the negative components to zero (MODML and 
MODREML) or setting negative estimates to zero plus 
re-solving the system (NNREML, NNML, and PNN- 
REML). MINQUE1 sampling variance is always equal 
to or greater than MIVQUE, as one might expect, since 
they are, in this application, the same technique with 
MIVQUE having perfect priors. Variance for HM3 esti- 
mators (TYPE3 and PTYPE3) is either equal to or 
greater than MIVQUE with the extent of the departure 
dependent on the level of imbalance. MIVPEN, although 
not practical, had much more precise estimates of vari- 
ance components than other techniques, illustrating what 
could be accomplished given the true values as priors 
plus maintaining estimates within the parameter space. 

An analysis of variance was conducted to determine 
the importance of the treatment of negative variance 
component estimates in the variance of estimation for 
REML and ML estimates. The model of sampling vari- 

ance of the estimates as a result of mating design, 
imbalance level, treatment of negative estimates and size 
of the variance component, demonstrated consistently 
(for all variance components except error) that treat- 
ment of negative estimates is an important component 
of the variance of the estimates (P < 0.05). The model 
accounted for up to 99% (0 .2 of the variation in the 
variance of the variance component estimates with: (1) 
accepting and using negative estimates producing the 
highest variance; (2) setting the negative components to 
zero being intermediate; and (3) re-solving the system 
with negative estimates set to zero providing the lowest 
variance. 

For all estimation techniques, lower variance among 
estimates was obtained by using individual observations 
as compared to plot means. The advantage of individual 
over plot-mean observations increased with increasing 
imbalance. 

Bias. The most consistent performer for bias (Table 3) 
was TYPE3, known from inherent properties to be 
unbiased. The consistent convergence of the TYPE3 
value to the MIVQUE value indicated that the number 
of data sets used (1 000 per technique and experimental 
level) was suitable for the purpose of examining bias. 
The other two consistent performers were REML and 
MINQUE1. Bias resulted primarily from the method of 
dealing with negative estimates. 

Probability of nearness. Results for probability of 
nearness proved to be largely non-discriminatory 
among techniques (Table 3). The low levels of pro- 
bability density near the parametric values is indicative 
of the nature of the variance component estimation 
problem. 

Table 2 Abbreviation for and description of variance component estimation methods utilized for analyses based on individual observations 
(if utilized for plot-mean analysis the abbreviation is modified by pre-fixing a 'P') 

Abbreviation Description Citation 

ML 
PML 
MODML 
NNML 

REML 
PREML 

MODREML 

NNREML 
PNNREML 
MIVQUE 
PMIVQUE 
MINQUE1 
PMINQUE1 
TYPE3 
PTYPE3 
MIVPEN 

Maximum likelihood: estimates not restricted to the parameter space (individuai and plot- 
mean analysis). 

Maximum likelihood: negative estimates set to zero after convergence (individual analysis) 
Maximum likelihood: if negative estimates appeared at convergence, they were set to zero 

and the system re-solved (individual analysis) 
Restricted maximum likelihood: estimates not restricted to the parameter space (individual 

and plot-mean analysis) 

Restricted maximum likelihood: negative estimates set to zero after convergence 
(individual analysis) 

Restricted maximum likelihood: if negative estimates appeared at convergence, 
they were set to zero and the system re-solved (individual and plot-mean analysis) 

Minimum variance quadratic unbiased: non-interative with true (parametric) values of 
the variance components as priors (individual and plot-mean analysis) 

Minimum norm quadratic unbiased: non-interative with ones as priors for all 
variance components (individual and plot-mean analysis) 

Sequentially adjusted sums of squares; Henderson's Method 3 
(individual and plot-mean analysis) 

MIVQUE with a penalty algorithm to prevent negative estimates (individual analysis) 

Hartley and Rao 1967; 
Shaw 1987 

Hartley and Rao 1967 
Hartely and Rao 1967; 

Miller 1973 
Patterson and Thomp- 

son 1971; Shaw 
1987; Harville 1977 

Patterson and Thomp- 
son 1971 

Patterson and Thompson 
1971; Miller 1983 

Rao 1971b 

Rao 1971a 

Henderson 1953 

Harville 1977 



Table 3 Sampling variance of 
the estimates (left column, as a 
percentage of the MIVQUE esti- 
mate), Bias (center column, as a 
percentage of the MIVQUE esti- 
mate) and Probability of nearness 
(interval equals the parameter 
magnitude, as percentage of esti- 

�9 �9 2 mates in the interval) for cr 0 (up- 
2 2 per row), a,g (second row), and h 

(third row where calculated) 
within each cell by type of es- 
timator and treatment combina- 
tion. NA is not applied 

Estimator DIS80 DIS65 D2S65 H1S80 H1S65 

REML 10010033 10310224 102 9942 1 0 0 1 0 0 4 5  10610329 
10010043 1 0 0 1 0 2 2 6  1 0 4 1 0 0 2 6  10010037 98 9927 
100100 34 101 10125 101 99 45 100100 45 106103 28 

ML 77 7534 78 6222 76 7641 96 9645 104 9829 
107107 43 105115 26 111 110 25 101 10136 99102 27 
82 7635 83 6222 86 7845 96 9646 104 9828 

MINQUE1 100100 33 104 96 25 104 99 41 104 99 45 147 102 26 
101 10043  1 1 9 1 0 1 2 4  12410125 112101 34 140 98 23 
10010034 106 9725 104 9945 104 9 9 4 5  14610126 

NNREML 81 108 33 72116 23 95 98 42 88102 45 69 108 29 
68 9345 48 9228 55 9326 7910038 4910229 
77 1 0 9 3 4  6411824 92 9846 87 10245 68 10830 

NNML NA NA NA 83 102 50 65 108 30 
79 10038 49 10229 
83 9846 65 10429 

MODML 58 8734 50 9022 70 7941 85 9845 7511429 
13 11043 8213026 8212725 87 10136 68 123 27 
58 8835 46 9222 72 7 9 4 5  8410046 7111328 

MODREML 82110 33 74124 24 96 10142 89103 45 78 118 29 
89104 43 74120 26 74119 26 85105 37 6712127 
76110 34 64123 25 89 98 45 88 103 45 74116 28 

TYPE3 101 100 34 101 99 23 10610042 101 10045 121 100 27 
101 10043 101 10127  11610225 101 100 37 126 10125 
100100 35 108 100 24 103 99 46 100100 46 122 100 27 

PREML 10010032 106 9920 102 9842 108 10044 147 11125 
103 100 43 114104 27 120100 25 122102 32 151 98 20 

PML 78 7434 82 5820 77 7440 104 9644 14310524 
11010741 117116 26 12711224 123 103 32 152102 21 

PMINQUE1 10010032 108 9521 105 9940 108 10044 179 10624 
103 10043 129 10225 137 10323 12210232 181 11522 

PNNREML 81 108 32 71 11419 94 9741 93 10243 8711626 
70 9343 53 9428 60 9523 9410433 6811021 

PTYPE3 10010032 107 9723 105 9942 108 10044 168 10425 
103 10043 125 9725 133 9624 12210232 185 10922 
101 10033 111 9824 104 9 9 4 6  10710045 168 10425 

MIVPEN NA 36107 41 29 99 78 80102 48 46 103 36 
27 9947 20 9260 7410139 4010531 
35 113 42 30104 80 80102 49 45 103 35 

PMIVQUE 10010032 104 9720 102 9942 108 10044  14710726 
103 100 43 114102 28 118 100 27 122102 32 151 99 21 
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Ratios of variance components  

Single tree heritability. Results for estimates of single 
tree heritability adjusted for locations and blocks are 
shown in Tables 2 and 3 (third number  from the top in 
each cell, if calculated). For  these relatively low heri- 
tabilities (0.1 and 0.25), the bias and variance properties 

2 esti- of the estimated ratio are similar to those for ag 
mates. This implies that the denominator  of the herita- 
bility estimate (the phenotypic  variance estimate) is 
relatively stable across techniques and, as the denomi- 
nator  of a ratio with an expected value of 0.1 or 0.25, has 
little effect on the variance of the ratio (Kendall and 
Stuart 1963). Variance componen t  estimation tech- 
niques which performed well for bias and/or  variance 

2 also performed well for h 2. among  estimates for o-g 

Type B correlation and dominance to additive variance 
ratio. Type B correlation (refer to a~o Tables 1 and 3) 
and dominance to additive variance ratio (data not  
shown) estimates both  proved to be too unstable (ex- 
tremely large variance among estimates) to be useful in 

discrimination among variance component  estimation 
techniques. This high variance is due to the estimates of 
the denominators  of these ratios approaching zero and 
to the high variance of the denominator  of ratios 
(Tables 1 and 3). 

Recommendat ion  

If one were to choose a single variance component  
estimation technique from among  those tested which 
could be applied to any data set with confidence that the 
estimates had desirable properties (variance, MSE, and 
bias), that technique would be R E M L  and the basic unit 
of analysis would be the individual observation�9 This 
combinat ion (REML plus individual observations) 
performed well across mating design and types and 
levels of imbalance. Treatment  of negative estimates 
would be determined by the use of the estimates; that is, 
whether unbiasedness (accepting and using the negative 
estimates) is more impor tant  than sampling variance 
(re-solve the system setting negative estimates to zero). 
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